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Quantum Monte Carlo (QMC) methods have received considerable attention over the last

decades due to their great promise for providing a direct solution to the many-body Schrodinger

equation in electronic systems. Thanks to their low scaling with number of particles, QMC

methods present a compelling competitive alternative for the accurate study of large molecular

systems and solid state calculations. In spite of such promise, the method has not permeated

the quantum chemistry community broadly, mainly because of the fixed-node error, which can

be large and whose control is difficult. In this Perspective, we present a systematic application

of large scale multi-determinant expansions in QMC, and report on its impressive performance

with first row dimers and the 55 molecules of the G1 test set. We demonstrate the potential

of this strategy for systematically reducing the fixed-node error in the wave function and for

achieving chemical accuracy in energy predictions. When compared to traditional quantum

chemistry methods like MP2, CCSD(T), and various DFT approximations, the QMC results

show a marked improvement over all of them. In fact, only the explicitly-correlated CCSD(T)

method with a large basis set produces more accurate results. Further developments in trial

wave functions and algorithmic improvements appear promising for rendering QMC as the

benchmark standard in large electronic systems.

1 Introduction

Numerical methods have become an invaluable tool in almost all branches of the physical sciences

and have been particularly important in the fields of quantum chemistry and solid state physics.

For classical systems, direct stochastic simulation techniques such as Monte Carlo and Langevin

molecular dynamics have been an essential tool in understanding diverse phenomena ranging from

crystalline structures to liquids.1,2 For quantum systems, the fundamental problem is solving the

Schrodinger equation. Unfortunately, exact methods for solving the fermionic Schrodinger equa-

tion rely on an explicit construction of the Hilbert space of the problem and thus scale exponentially

with system size. Through a combination of faster computers and better algorithms, the prospects

for a direct solution to the Schrodinger equation has become realistic for a number of important
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systems; as of today, however, we must resort to approximate schemes for obtaining results in

larger systems of practical interest. At high temperatures, where there is a continuous crossover

between classical and quantum degrees of freedom, Monte Carlo methods in the form of Path In-

tegral Monte Carlo are the dominant approach. Such methods have been important in the study

of hydrogen and other light elements at high pressures and high temperatures.3 It is then surpris-

ing that ground state quantum problems of limited size, such as those arising from the electronic

degrees of freedom of atoms and small molecules, are not dominated by stochastic approaches.

Traditional quantum chemistry (QC) methods currently offer the best compromise between

accuracy and computational cost for molecular ground state calculations. The coupled cluster

method with singles, doubles and perturbative triples, CCSD(T), is generally considered the “gold

standard" in the field. It should be pointed out, however, that CCSD(T) is very reliable only for

problems dominated by so-called weak correlations that are predominant in the upper rows of the

periodic table. In the presence of strong correlations (degeneracy or near degeneracies in the un-

derlying reference determinant), multi-reference CC methods are required,4 and these are far less

developed and limited to relatively small systems. On the other hand, QMC methods, based on

a stochastic solution of the Schrodinger equation, offer a promising alternative to traditional QC

methods. On the positive side, QMC offers low scaling with particle number yielding efficient

solutions for large systems where QC methods are prohibitively expensive. QC methods are gen-

erally not size extensive except for CC theory. QMC is not size extensive either but the error can be

controlled by working on the Gamma point with periodic boundary conditions (PBC) 1 and extrap-

olating to the thermodynamic limit.6,7 In addition, QMC has a weak dependence on the basis set,

as opposed to QC methods that rely on tailor made basis sets combined with basis set extrapolation

techniques. On the negative side, the application of QMC to electronic structure suffers from the

well-known fermion sign problem, which results in errors that are difficult to control and predict.

In order to produce a practical method, the fixed-node approximation is typically employed, and

while the accuracy is only limited by the choice of trial wave function, a simple ansatz often yield

1It is also possible to apply Twist Averaged Boundary Conditions,5 which helps remove the size effects in the
energy caused by the quantization of momentum with PBC.
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results that do not always compare satisfactorily with experiment. A clear approach for improving

the accuracy of QMC is simply to improve the quality of the trial wave-function.

Despite their promise, QMC methods have not received a lot of attention in the QC com-

munity. Two factors have likely contributed to this state of affairs: the low accuracy of routine

QMC calculations when compared to CCSD(T), and the lack of black-box user-friendly computer

codes that dominate the QC landscape. In addition, the extension of QMC methods towards the

calculation of properties other than ground state energies has been a slow process. Fortunately,

this has accelerated over the last years, where applications of QMC methods have appeared in the

calculation of excitation energies in large molecules,8 in the structural optimization of molecules

including excited states,9 and in the calculation of molecular electric properties,10 to mention a

few. In this Perspective, we address the first of these two obstacles by using an improved trial

wave function. We have recently developed a scheme for the fast and efficient computation of

large multi-determinant expansions in QMC.11 This scheme allows us to perform QMC efficiently

with thousands of determinants. Being able to perform such large multi-determinant expansions

gives us a knob that can be systematically improved as well as an effective parameter that can

be extrapolated. Additionally, the use of an arbitrary bosonic Jastrow factor, implicitly included

in QMC through the fixed node approach, makes determinants used in the QMC framework sig-

nificantly more powerful than the equivalent number of determinants used in a QC method. We

here present benchmark examples where selecting determinants for QMC from a truncation of the

second order CI (SOCI) expansion gives results significantly better than SOCI itself, and compa-

rable in quality to CCSD(T)-R12 extrapolated to the complete basis limit. We exemplify the QMC

quality improvement originating from this ansatz with calculations on first row molecules.

The organization of this paper is as follows. In section Section 2 we describe the form of the

wave function used in the calculations, as well as the optimization procedure employed. In section

Section 3 we discuss our results on first row atoms and dimers. Finally, section Section 4 describes

the results on the 55 molecules of the G1 set. This is followed by a discussion of the implications

of this work in the QMC community and possible future research.
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2 Trial Wave Function and Optimization Method

There has been significant improvement in QMC methods over the last decade. Some of these im-

provements have focused on the development and implementation of new wavefunctions including:

Pfaffians,12 generalized valence bond (GVB),13 antisymmetrized geminal power (AGP),14 back-

flow transformation,15 and multi-determinant expansions.11,16,17 This has been combined with

the development of robust and efficient optimization methods18,19 and the introduction of novel

basis functions (for effective core potentials (ECP)20 and for all-electron calculations21). We re-

cently introduced a computational scheme that allows the quick and efficient evaluation of multi-

determinant expansions in QMC calculations,11 allowing us to routinely use thousands of deter-

minants in calculations with molecules at a small increase in computational cost. In this article,

we make use of this method to demonstrate the power of QMC when the trial wave function is

systematically expanded in determinants. The wave-function takes the form:

Ψ = exp[−J(R)]∑
k

αk detM↑k detM↓k (1)

where J is a Jastrow function which contains one, two, and three body correlation terms, and αk is

the weight of the k′th determinant configuration. The (i, j) element of matrix Mk is equal to

Mσk[i, j] = φ j(ri)

where φ j are 3 dimensional single particle orbitals (s.p.o) selected from a given orbital set.

The parameters in the Jastrow and the contraction coefficients {α} of the multi-determinant

expansion are optimized by the linear optimization method first pioneered by Umrigar and co-

workers.22 This method diagonalizes the Hamiltonian in a sub-space formed by taking the deriva-

tives of the trial wave functions with respect to its parameters and linearizing them. In the case

of a trial function which is linear in the parameterization, such as a multi-determinant expansion

with no Jastrow, the resulting sub-space is complete, and the solution to the eigenvalue equations
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is the lowest energy solution. Rescaling of the lowest energy eigenvector is allowed when non-

linear parameters are included, either by a line minimization, controlling the normalization, or any

other criterion, to speed the convergence to the minimum. Typically, fewer than ten iterations are

required, each using an increasing number of Monte Carlo steps.

3 First Row Dimers

In this section, we use large multi-determinant expansions in all-electron calculations of first row

atoms and dimers. There are very accurate total energy calculations on these systems19,23–27 and

they have traditionally been used to test new wavefunctions in QMC, offering an excellent oppor-

tunity to test the power of this methodology. All quantum chemistry calculations presented in this

section were performed with the GAMESS code,28 using the Roos augmented triple zeta atomic

natural orbital gaussian basis set.29–31 In our approach, the ultimate accuracy is currently limited

by the choice of molecular orbitals (MO) in the calculations and the selection of determinant con-

figurations included in the expansion. Since we don’t currently optimize the single-particle orbitals

directly in QMC, we need to start with a reasonable set of MOs to reduce the number of determi-

nants needed to achieve a given accuracy. For the calculations in this section, we use the natural

orbitals (NO) of a self-consistent second-order configuration interaction (SOCI) calculation, with

an active space including all electrons in 10 orbitals, and up to 40 orbitals in the virtual space. We

use configurations state functions (CSF), which are spin and space adapted linear combinations

of determinants, and these were selected using a cutoff on the expansion coefficients of the SOCI

calculation. The Jastrow factor consisted of one, two, and three body terms and all the parameters

were optimized simultaneously using the method described in section Section 2.

Table I shows the calculated VMC and DMC energies for the largest MSD expansions em-

ployed in this work, along with the energies extrapolated to zero cutoff and the estimated exact

energies. The percentage of correlation energy recovered by the method is also shown, along with

the number of CSFs used in the reported calculations. In all cases, the extrapolated DMC energies
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Table 1: Summary of QMC results for first row atoms and dimers. Estimates of exact results are
taken from.19,23–27

Atoms
Li (2S) Be (1S) B (2P) C (3P) N (4S) O (3P) F (2P)

# CSFs 81 160 396 651 755 873 1051
VMC -7.47766(2) -14.66688(4) -24.65248(6) -37.8423(1) -54.5854(2) -75.0620(4) -99.7275(5)
DMC -7.478052(7) -14.66728(2) -24.65359(4) -37.84438(5) -54.58829(7) -75.06591(8) -99.7325(1)

Estm. Exact -7.4780603 -14.66736 -24.65391 -37.8450 -54.5892 -75.0673 -99.7339
VMC-corr % 99.13(4) 99.50(4) 98.86(5) 98.25(6) 97.7(1) 98.0(2) 98.0(2)
DMC-corr % 99.9(2) 99.92(1) 99.74(1) 99.61(1) 99.52(1) 99.46(3) 99.56(3)

Dimers
Li2 (1Σ+

g ) Be2 (1Σ+
g ) B2 (3Σ−g ) C2 (1Σ+

g ) N2 (1Σ+
g ) O2 (3Σ−g ) F2 (1Σ+

g )
Bond Length 5.051 4.65 3.005 2.3481 2.075 2.283 2.668

# CSFs 526 924 2429 2937 2443 3033 2537
VMC -14.9941(2) -29.3363(1) -49.4071(3) -75.9108(1) -109.5214(3) -150.2991(9) -199.498(1)
DMC -14.99481(6) -29.33865(6) -49.4131(2) -75.9205(3) -109.5367(3) -150.3194(3) -199.5213(3)

VMC-extrap -14.9941(2) -29.3370(2) -49.4093(5) -75.9157(3) -109.5224(4) -150.305(2) -199.501(1)
DMC-extrap -14.99481(6) -29.33872(5) -49.4137(2) -75.9229(6) -109.5372(3) -150.3216(3) -199.5219(3)
Estm. exact -14.995(1) -29.3380(4) -49.4141 -75.9265 -109.5427 -150.3274 -199.5304

VMC-corr % 99.3(2) 99.5(1) 98.5(2) 97.92(6) 96.30(7) 96.6(3) 96.1(1)
DMC-corr % 99.85(5) 100.35(2) 99.88(6) 99.3(1) 99.00(5) 99.12(5) 98.88(4)

recover at least 99% of the correlation energy.

Figure Table 1 shows a comparison, between our results and several recently published cal-

culations, of the percentage of correlation energy recovered by VMC and DMC for all first row

atoms. In the work of Toulouse et al.,19 the authors used a MSD expansion similar to the work

presented here, but they limited their determinant configurations to those with excitations within

the CAS of the valence electrons, or Full Valence CAS (FVCAS). In addition, they perform a full

optimization of all the variational parameters in the wavefunction, including molecular orbitals and

atomic basis sets (e.g., gaussian exponents). The work of P. Seth, et al.17 is also based on small

MSD expansions, but with the inclusion of optimized backflow transformations. As can be seen

from the comparison, limiting the configurations in the MSD expansion to a small FVCAS has a

strong effect in the amount of correlation energy recovered by the calculation; excitations to higher

virtual states contribute significantly towards the reduction of the remaining fixed-node error. This

is even more pronounced when we consider the fact that they do a better optimization of the wave-

function, since they optimize the molecular orbitals at the VMC level whereas we are limited to the

orbitals produced by the SOCI method. The inclusion of backflow, on the other hand, produces a
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Figure 1: Percentage of the correlation energy recovered by VMC and DMC methods, for first row
atoms. Results reported in this work are compared with recent results from J. Toulouse, et al.19

and P. Seth, et al.17

large improvement on the results. This is clearly seen by noticing that they used MSD expansions

approximately 10-50 times smaller than in this work, yet their VMC energies are typically better

than ours, while the DMC energies are similar. Although our MSD expansions are at least an order

of magnitude larger, we anticipate that the computational cost of these different approaches should

be competitive as backflow transformations are expensive and our MSD expansions are evaluated

extremely efficiently. Regardless of this, the use of backflow makes a considerable improvement to

both energies and variances in QMC, so its use combined with very large MSD expansions should

produce very accurate results. This is currently being investigated.

Figure Figure 1 shows the error in the DMC total energies (relative to the near ‘exact’ results)

for all first row dimers, for various cutoffs in the MSD expansion. Results from the FVCAS

calculations of Toulouse et al.19 are also shown for comparison. Similar to the case of first row

atoms, limiting the determinant configurations to valence orbitals only produces total energies with

limited accuracy. On the other hand, a systematic expansion into larger MSD sets is clearly seen to

converge towards the correct results. The results presented here are the most accurate QMC total

energy calculations of first row dimers at equilibrium to date.

An important point to notice in these results is the increase in the errors with increasing atomic

number. There are several reasons for this. On the one hand, the DMC energies have some de-
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Figure 2: Error in the DMC total energy of first row dimers, as a function of the cutoff in the MSD
expansion. Results from J. Toulouse, et al.19 are also shown for comparison.

pendence on the quality of the atomic basis sets in the core region, and this effect gets more

pronounced with larger atomic number. This effect can be reduced with better basis sets, tailored

for all-electron QMC calculations, but we have not pursued this in this work. On the other hand,

in this section we limit the determinant configurations to single and double excitations outside the

employed CAS (SOCI); this is not size extensive and has a stronger effect in systems with more

electrons. Nonetheless, we clearly show the capacity of large multi-determinant expansions to cap-

ture a large fraction of the correlation energy missed at the single determinant level, reaching high

levels of accuracy and systematically reducing the fixed-node error.

4 G1 set

In this section, we apply the MSD wave-function to the 55 molecules in the G1 set.32,33 We have

used the same geometries as in previous QMC studies,34 in order to have a clear comparison with

previous results. With the exception of hydrogen atoms, we used the Burkatzi-Filippi-Dolg (BFD)

set of pseudopotentials and corresponding optimized basis sets.35 The Coulomb potential was used

for hydrogen with the Roos augmented triple zeta atomic natural orbital gaussian basis set.29–31 We

have used the MP2 natural orbitals (NO) in the multi-determinant expansion and the determinant
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configurations were chosen from CISDTQ calculations with those orbitals. Similar to the previous

section, we use configuration state functions to eliminate redundant variational parameters from the

wave function and facilitate the optimization process; the number of configurations is controlled by

applying a cutoff to the resulting CISDTQ wave-function based on the magnitude of the expansion

coefficient. To this multi-determinant expansion we add a Jastrow factor that contains 1,2, and

3 body terms and optimize all the variational parameters simultaneously (including the nonlinear

Jastrow coefficients and the linear CSF coefficients) with the method described in section Section 2.

DMC calculations were performed with a timestep of 0.0025 Ha−1 using a target population of

≈ 2500 walkers. In addition, we used T-moves36 to obtain a rigorous upper bound to the ground

state energies.

Throughout this section, we will use results from explicitly-correlated CCSD(T) calculations

extrapolated to the complete basis set limit (CBS-CCSD(T)-F12) as a reference. These calcula-

tions were performed with the MOLPRO software package.37–40 The F12 calculations41–43 were

performed with density fitting44 and resolution of the identity with optimized basis sets.45–48 This

represents the gold standard in quantum chemistry for the types of molecules here analyzed and

has been shown to produce very accurate results in the study of sets of molecules similar to the

one we study here.49 We performed the basis set extrapolation based on the VTZ, VQZ and V5Z

basis sets; the errors in the extrapolation procedure are expected to be on the order of 0.1 mHa.50

As shown by Feller, et al.,49 higher order corrections to the FC-correlation energy are typically on

the order of 0.2-0.5 mHa, although there are a few notable cases in the molecules studied in this

work like CN with a correction of ∼1.57 mHa, and molecules like ClO, HNO, Si2, O2, F2, and P2

with corrections around ∼1 mHa. These corrections are likely to be smaller in our case, since we

use pseudopotentials.

Figure Section 4 shows a summary of the difference in total energies between DMC and CBS-

CCSD(T)-F12 for all 55 molecules in the G1 set. Various cutoffs in the MSD expansion are shown,

as well as single determinant cases both with ROHF orbitals and MP2-NO. The figure also includes

the energy obtained by extrapolating the results to zero cutoff.11,16 We see a dramatic improvement
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Figure 3: DMC total energy of all 55 molecules of the G1 set considered in this work, for various
cutoffs in the MSD expansion. The figure also includes the energy obtained by extrapolating the
results to zero cutoff.

in the DMC energies with decreasing cutoff; in fact the mean absolute error (MAE) decreases from

∼ 18 mHa in the single determinant case, to ∼ 3 mHa with a cutoff of 0.001, and to ∼ 2 mHa for

the extrapolated values. This is more pronounced in the case of difficult molecules like SO2 where

the MSD expansion recovers∼ 35 mHa with respect to the single determinant case; this represents

∼ 88% of the fixed-node error. The dependence of the energy with the number of configurations

in the expansion varies across the set. This is not unexpected since it will in general depend on the

multi-configurational character of the molecule and on the ability of MP2 to produce an accurate

orbital set. This is clearly shown when you compare molecules like CHn with molecules like SO2

and H2O2. In the former, the inclusion of a few configurations is enough to recover most of the

fixed-node error while in the latter the improvement is slow and more systematic.

Figures Figure 4 and Figure 5 show the MAE in the total energy and the atomization energy re-

spectively, always taking CBS-CCSD(T)-F12 as reference. In both cases we show the dependence

with cutoff in the MSD expansion, as well as results from various standard quantum chemistry

methods, in particular MP2, CCSD(T), CCSD(T)-F12 and DFT with various functionals. Only the

CCSD(T)-F12 method is able to produce results that are better than DMC. Traditional quantum

chemistry methods must be combined with large tailor-made atomic basis sets in order to reach
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Figure 4: Comparison of the mean absolute error (MAE) of the total energy between QMC and
several traditional quantum chemistry methods.

chemically accurate results; DMC results, on the other hand, have a much smaller dependence on

basis sets.

These results are very encouraging for several reasons. The computational cost of traditional

quantum chemistry methods has a very steep scaling with system size, e.g. MP2 scales as N5,

CCSD as N6 , and CCSD(T) as N7, where N is representative of the size of the system. DMC,

on the other hand, scales as N3 for the energy per electron in its basic implementation which can

be improved to N2 with efficient wave function evaluation techniques and possibly to linear scal-

ing [3,4]. While it is unlikely that QMC replaces CCSD(T) as the standard method in the study

of small molecular systems (up to 5-10 atoms), these results show that it has the potential of be-

coming the community standard in large molecular systems and periodic calculations. In addition,

the results on the G1 set show the great promise of new wave functions in QMC. While large

multi-determinant expansions clearly show remarkable potential, it is possible to obtain even bet-

ter results with the inclusion of more elaborate choices like a systematic expansion in geminals [5],

and multi-determinants combined with backflow [6], to name a few. Finally, the use of large de-

terminant expansions has great potential in the study of low lying excited states, offering a natural

basis set in the Correlated Function Monte Carlo method [7]. We expect a dramatic improvement
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Figure 5: Comparison of the mean absolute error (MAE) of the atomization energies between
QMC and several traditional quantum chemistry methods.

in the study of excitation energies of molecular systems with this method, with a possible extension

to periodic systems and solids with the use of localized molecular orbitals.

Recently, calculations of the atomization energies on the G1 set with QMC methods have been

reported by F. R. Petruzielo, et al.51 In their work, they also used the BFD set of pseudopotentials

and optimized basis sets, with the exception of hydrogen where they used an optimized pseudopo-

tential created for their work. While they also used multi-determinant expansions in their work,

they limited the excitations in the determinant to the FVCAS of the molecules. Figure Figure 6

shows the difference between the best DMC energies reported by F. R. Petruzielo, et al. and the

DMC energies with the largest multi-determinant expansion used in this work. Notice that the

hydrogen atoms are described in different ways in both sets of calculations, so comparisons should

be made with care. They report a MAE in the atomization energies (comparing to experimental

results) of 1.2 kcal/mol, in good agreement with our best results. Notice that this is mainly due

to error cancelation between the energies of the molecules and the corresponding atoms. This

suggests that, while large multi-determinant expansions are necessary in order to systematically

reduced the fixed-node error in the DMC energies, a scheme to introduce size-consistency is also

required to produce accurate atomization energies. This will be particularly important in the study

of larger molecular systems with this approach.
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Figure 6: Comparison of the fixed-node DMC energies between this work and the recent calcula-
tions of F. R. Petruzielo, et al.51 Their calculations were performed with an ECP for hydrogen, as
opposed to our calculations where the Coulomb potential was used. Although the effect should be
small, the comparison in the case of molecules containing hydrogen (moved to the right end of the
figure) will be affected by this and should be taken with care.

5 Conclusions

In this Perspective, we have shown that QMC with our improved multi-Slater-Jastrow wave func-

tion gives results on atoms and small molecules that are competitive with the best QC predictions.

In particular, for first row dimers and the molecules in the G1 set, we find that QMC is strictly more

accurate than MP2, CCSD(T), various DFT approximations, and even competitive with CCSD(T)-

R12. For first row atoms and dimers, QMC recovers more than 99% of the correlation energy in all

cases. For the G1 set, the MAE in total energy is approximately 2 mHa and the MAE in atomiza-

tion energies is approximately 0.8 kcal/mol. These results demonstrate that QMC is a promising

alternative to traditional QC methods for a wide variety of systems.

The particular ansatz that we use in this paper has the added advantage of being systematically

improvable. Increasing the number of determinants yields improved results. This means (1) that

one can extrapolate based on this parameter, (2) that there is a systematic way to improve accuracy

if a better result is desired, and (3) that one can estimate whether the answer has converged. These

points, combined with the variational upper bound that comes from QMC, gives significantly more
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control over the fixed node error than has been previously feasible from single shot QMC calcu-

lations. In fact, we believe that the results presented in this paper are already a good database for

understanding the fixed node error on the single determinant Slater-Jastrow wave function as it

relates to different molecular and atomic systems.

Finally, although we find the current QMC status already impressive, we believe that this may

be the first step in a longer quest for approaching chemical accuracy on larger molecules and

condensed systems. Beyond the results shown in this article, our optimism arises from two facts.

First, QMC is able to effectively leverage increases in computational power as a result of its natural

parallelization and low scaling with particle number. Second, research into new variational ansatz

is still in its infancy and we speculate that further improvements as equally impressive as those

reported here may be achievable. Our optimism suggests that QMC is a fertile research field

worthy of receiving more attention.
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